ER 系列工业机器人二维视觉调试手

(RCS2 V1.4)

修订记录

序号	日期	版本	描述			
1	2018.08.17	V1.0	初次发布			
2	2018.10.10	V1.1	1、修改 TrigCam 指令,可以直接发字符串; 2、修改视觉协议发送数据描述; 3、修改 Test 示例程序;			
3	2019.01.16	V1.2	 修改 GetCamPos 指令,增加 ObjID、isValid; 《修改 WaiFinishCam 指令名称; 《修改了个别数据描述,特别删除了对动态视觉的描述。 			
4	2019.05.27	V1.3	1、 增 加 相 机 通 讯 个 数, TrigCam、 GetCamPos 、 WaiFinishCam 三个指令增 加相机索引号参数。 2、 修改视觉配置项,增加附加 相机配置描述			
5	2020.5.21	V1.4	1、 更改个别错误描述。 2、 更改二维视觉调试说 明。			

目 录

刑	音	3
第	1章 功能简介	4
第	2 章 视觉指令介绍	4
•••	2.1 TrigCam	
	2.2 WaitFinishCAM	
	2.3 GetCamPos	
第	3 章 视觉协议介绍	
210	3.1 发送数据	
	3.2 读取数据	
筆	4 章 视觉配置介绍	
210	4.1 默认相机视觉配置说明:	
	4.2 附加相机视觉配置说明	
笙	5 章 示例程序	
	6 章 二维视觉调试	
æ	6.1 通信心跳的说明	
	6.2 SocketTest 调试助手	
	6.3 调试步骤	11

前言

本手册适用于控制系统 RCS2 V1.18, 描述自主控制器视觉功能介绍,包括视觉指令、视觉配置、视觉示例程序和二维视觉调试方法。

本手册仅供受过培训,熟悉各种适用国家标准的"控制、自动化和驱动工程" 领域专业人员。

- 系统生产商:对系统进行功能诊断的操作人员。
- 系统集成商: 指机床厂家的技术人员。
- 在安装和调试这些组件时,操作人员必须严格遵循本文档的说明和解释。
- 相关负责人员必须确保所述产品的应用或使用满足所有安全要求,包括相关法律、法规、准则和标准。
- 尽管本文档经过精心编制,但由于其中所描述的产品仍处于不断更新换代中, 我们可能不会在每次更新后都检查文档中所描述的产品性能数据、标准或其它 特性总是与实际产品相一致。
- 本文档中难免会出现一些技术或者编辑错误,我们保留随时对文档信息做出修改之权力,恕不另行通知。对于已经变更的产品,如果本文档中的数据、图表以及文字描述没有修改,我们将不再特别加以声明。
- 任何人不得对软、硬件配置进行文本档中规定之外的修改,ESTUN 公司对因此而造成的一切后果不承担任何责任。
- 本文档中出现图示单位在没有特别标注说明时,默认单位为毫米 mm。

▲ 警告	受伤的危险 不遵守本标志相关的安全说明将危及个人生命和健康安全。
<u>入</u> 注意	对环境和设备有危险 不遵守本标志相关安全说明可能明显危害环境和设备安全。
1 说明	说明或提示 该标志表示这些信息能够帮助您更好的理解安全说明。

第1章 功能简介

机器人视觉是指使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。机器人视觉可以通过视觉传感器获取环境的二维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置。

第2章 视觉指令介绍

视觉指令的使用需要配合视觉软件及外配摄像头一起使用,并需要提前进行视觉的标定。视觉指令包括 TrigCam、WaitFinishCAM、GetCamPos 三条指令,这三条指令必须按顺序进行调用。

视觉使用前需要机器人标定一个用户坐标系,此坐标系需与视觉的坐标系一致。

2.1 TrigCam

触发视觉系统讲行一次拍摄。

加载工程,并打开文件,进入指令编辑界面,选中要加入的指令位置,点击左下方新建按钮,在弹出菜单里选择视觉指令,并在视觉指令里选择 TrigCam。使用 TrigCam 指令,可以直接发送客户自定义的字符串到视觉设备。

例如: TrigCam("abc", 0);

参数 1: 自定义字符串

参数 2: 相机索引号 (0 为默认相机, 1 为相机 1, 2 为相机 2.....10 为相机 10)

2.2 WaitFinishCAM

加载工程,并打开文件,进入指令编辑界面,选中要加入的指令位置,点击左下方新建按钮,在弹出菜单里选择视觉指令,并在视觉指令里选择 WaitFinishCAM,然后弹出等待时间设置框,设置当触发进行拍摄指令之后,等待视觉处理完成的时间,单位为ms。

例如: WaitFinishCAM(1000, 1);

参数 1: 等待视觉处理完成的时间 (ms)

参数 2: 相机索引号 (0 为默认相机, 1 为相机 1, 2 为相机 2......10 为相机 10)

2.3 GetCamPos

加载工程,并打开文件,进入指令编辑界面,选中要加入的指令位置,点击左下方新建按钮,在弹出菜单里选择视觉指令,并在视觉指令里选择GetCamPos,

获取视觉传来的目标物体的中心位置(用户坐标系下的X,Y坐标,以及A),并传给选定的位置变量。直角坐标位置变量需要提前示教好到目标物体垂直方向的高度。例如:GetCamPos(P1,INT0,INT1,1)。

参数 1: 世界坐标系下的给定点

参数 2: 目标物 ID 值

参数 3: 目标点有效性变量,获得视觉的位置成功则置有效性变量为 1,否则置 0

参数:4: 相机索引号(0 为默认相机, 1 为相机 1, 2 为相机 2......10 为相机 10)

注意: 这些指令只支持对静态目标的抓取。

第3章 视觉协议介绍

机器人作为 TCP 客户端,视觉设备作为 TCP 服务器端。

3.1 发送数据

可以向视觉设备发送字符串,字符串内容由用户自定义。在机器人运行发送数据指令后,机器人将向指定的视觉设备发送给定的字符串。

一般地,静态视觉采用指令触发方式。

3.2 读取数据

可以读取视觉设备发送的数据并进行解析,在机器人运行读取数据的指令后进行数据读取。数据格式需要按照如下的约定发送。

```
Image

[X:<x>;Y:<y>;A:<a>;ATTR:<ATTR>;ID:<id>]
.....

Done
```

其中 $X \setminus Y$ 为物体在坐标系内的位置(浮点型),A 为物体的角度(浮点型)。ATTR 表示属性(整型),ID 表示序号(整型),这两项均可由用户自定义。以下为一个范例。

```
Image

[X:1;Y:1;A:1;ATTR:1;ID:1]

[X:2;Y:2;A:2;ATTR:2;ID:2]

[X:3;Y:3;A:3;ATTR:3;ID:3]

[X:4;Y:4;A:4;ATTR:4;ID:4]

[X:5;Y:5;A:5;ATTR:5;ID:5]
```


Done

第4章 视觉配置介绍

4.1 默认相机视觉配置说明:

视觉配置位于系统设置->通用设置->视觉配置中,配置界面如图 4-1 所示:

	Oa 🖼	₩ 🕻 🗈	âj/		V:20%	nullTool	World	*	2nd
								✓	
基本设置	碰撞检测	振动抑制	视觉配置	跟隨设置	系统	IP设置	本地设置		A1
相机设备类型:	2D		-						-
摄像头IP:	摄像头IP: 192.168.60.230								A2
摄像头端口号:	6000								-
视觉类型	静态		-						A3
									A4
			确认						A5
			HIP IX						, AS
当前加载程序:/estu	当前加载程序:/estun/nain 2017-07-31 06:37:54								
用户管理	通用设置	高級设置	系统状态	硬件:	Miđ			维护	A6

图 4-1 视觉配置界面

相机设备类型:点击选择 2D 或 3D,这里选择 2D。

摄像头 IP:该属性值为相机的 IP 地址,默认连接的相机 IP 为 192.168.6.230。上电之后,机器人控制器就会作为客户端连接该 IP 地址的服务器。

摄像头端口号:该属性值是作为服务器的相机的端口号,默认端口号为6000。

视觉类型:点击选择静态。

4.2 附加相机视觉配置说明

附加相机配置位于视觉标定->相机配置,目前附加相机功能中机器人只做客户端。

图 4-2 标定界面

相机选项中配置默认相机和附加的 10 个相机, 默认相机 IP 配置参考 4.1。

附加相机配置首先选择到对应相机号,点击相机配置,如下:

图 4-3 附加相机配置界面

以下设置均为断电重启后生效。

相机使能:点击相机使能后,重启后,机器人系统会建立客户端与视觉通讯。默认使能不开启

相机 IP:该属性值为对应附加相机的 IP地址,默认连接的相机 IP为 192.168.6.230。 上电之后,机器人控制器就会作为客户端连接该 IP地址的服务器。

端口号:该属性值是作为服务器的相机的端口号,默认端口号相机 1 为 6001、相机 2 为 6002、...相机 10 为 6010。

保存之后数据重启后生效、返回后此界面退出。

第5章 示例程序

Test 程序:

TrigCam("trigcam",0)

WaitFinishCAM(1000,0)

GetCamPos(P1,INT0,INT1,0)

IF INT1 == 1 THEN

MovL(P1,V100,"RELATIVE",C50)

ENDIF

第6章 二维视觉调试

该部分介绍作为视觉客户端的机器人的视觉功能调试。SocketTest 作为调试服务器。SocketTest 模拟实际相机来调试视觉功能。

6.1 通信心跳的说明

外部相机作为服务器, 当与机器人连接上了之后, 机器人在没有发送数据的情况下需要每隔 18 秒发送一次""(16 进制 0x20, 空格符)字符给相机心跳。

如果机器人发送数据失败,会断开当前连接,重新连接服务器。

6.2 SocketTest 调试助手

SocketTestDlg 是卓岚公司开发的,综合的 TCP、UDP 协议的调试软件。自主控制器机器人视觉功能是选择的是 TCP 协议。该调试软件界面如图 6-1 下:

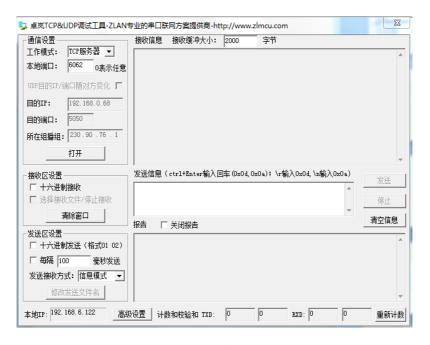


图 6-1 视觉配置界面

6.3 调试步骤

- 1、将本地电脑连通机器人。
- 2、检查机器人连接的 IP 和端口号,将本地电脑 IP 改为机器人连接的 IP,启动 SocketTestDlg.exe,设置工作模式为 TCP 服务器,本地端口为机器人设置的端口。
- 3、机器人每隔 18 秒需要发送一个""(16 进制 0x20,空格符)字符,给助手心跳。
- 5、以 Test 程序为例,从头开始逐条执行,至 TrigCam 指令完成,此时触发相机拍照。
- 6、发出触发相机拍照 TrigCam 指令后,会清空机器人之前收到的数据,此时发送数据,如:

Image

[X:120.2;Y:132.2;A:0;ATTR:1;ID:3]

Done

7、执行 WaiFinishCAM 指令时,如果机器人收到数据则不等待直接跳过,如果发送失败或格式不对,则会等待设定的时间,直到收到正确的数据或时间结束才会执行完成。在 WaiFinishCAM 等待时间后,继续逐条执行,至 GetCamPos 指令执行完成,查看 INT1 值是否为 1,若为 1 则获得的位置有效。